
A Common Database Interface (DBI)

R-Databases Special Interest Group
r-sig-db@stat.math.ethz.ch

26 August 2002

Contents

1 Version 1

2 Introduction 2

3 DBI Classes and Methods 3
3.1 ClassDBIObject . 5
3.2 ClassDBIDriver . 5
3.3 ClassDBIConnection . 6
3.4 ClassDBIResult . 8

4 Data Type Mappings 9

5 Utilities 10

6 Open Issues and Limitations 10

7 Resources 11

Abstract

This document describes a common interface between the S language (in its
R and S-Plus implementations) and database management systems (DBMS). The
interface defines a small set of classes and methods similar in spirit to Perl’s DBI,
Java’s JDBC, Python’s DB-API, and Microsoft’s ODBC.

1 Version

This document describes version 0.1-4 of the database interface API (application pro-
gramming interface).

1

mailto:r-sig-db@stat.math.ethz.ch

2 Introduction

The database interface (DBI) separates the connectivity to the DBMS into a “front-end”
and a “back-end”. Applications use only the exposed “front-end” API. The facilities
that communicate with specific DBMS (Oracle, PostgreSQL, etc.) are provided by “de-
vice drivers” that get invoked automatically by the S language evaluator. The following
example illustrates some of the DBI capabilities:

Choose the proper DBMS driver and connect to the server

drv <- dbDriver("ODBC")
con <- dbConnect(drv, "dsn", "usr", "pwd")

The interface can work at a higher level importing tables
as data.frames and exporting data.frames as DBMS tables.

dbListTables(con)
dbListFields(con, "quakes")
if(dbExistsTable(con, "new_results"))

dbRemoveTable(con, "new_results")
dbWriteTable(con, "new_results", new.output)

The interface allows lower-level interface to the DBMS
res <- dbSendQuery(con, paste(

"SELECT g.id, g.mirror, g.diam, e.voltage",
"FROM geom_table as g, elec_measures as e",
"WHERE g.id = e.id and g.mirrortype = ’inside’",
"ORDER BY g.diam"))

out <- NULL
while(!dbHasCompleted(res)){

chunk <- fetch(res, n = 10000)
out <- c(out, doit(chunk))

}

Free up resources
dbClearResult(res)
dbDisconnect(con)
dbUnloadDriver(drv)

(only the first 2 expressions are DBMS-specific – all others are independent of the
database engine itself).

Individual DBI drivers need not implement all the features we list below (we indi-
cate those that are optional). Furthermore, drivers may extend the core DBI facilities,
but we suggest to have these extensions clearly indicated and documented.

The following are the elements of the DBI:

1. A set of classes and methods (Section 3) that defines what operations are possible
and how they are defined, e.g.:

2

� connect/disconnect to the DBMS

� create and execute statements in the DBMS

� extract results/output from statements

� error/exception handling

� information (meta-data) from database objects

� transaction management (optional)

Some things are left explicitly unspecified, e.g., authentication and even the
query language, although it is hard to avoid references to SQL and relational
database management systems (RDBMS).

2. Drivers

Drivers are collection of functions that implement the functionality defined above
in the context of specific DBMS, e.g., mSQL, Informix.

3. Data type mappings (Section 4.)

Mappings and conversions between DBMS data types and R/S objects. All
drivers should implement the “basic” primitives (see below), but may chose to
add user-define conversion function to handle more generic objects (e.g., factors,
ordered factors, time series, arrays, images).

4. Utilities (Section 5.)

These facilities help with details such as mapping of identifiers between S and
DBMS (e.g.," " is illegal in R/S names, and"." is used for constructing com-
pound SQL identifiers), etc.

3 DBI Classes and Methods

The following are the main DBI classes. They need to be extended by individual
database back-ends (Sybase, Oracle, etc.) Individual drivers need to provide methods
for the generic functions listed here (those methods that are optional are so indicated).

Note: Although R releases prior to 1.4 do not have a formal concept of classes,
we will use the syntax of the S Version 4 classes and methods (available in R releases
1.4 and later as librarymethods) to convey precisely the DBI class hierarchy, its
methods, and intended behavior.

The DBI classes areDBIObject , DBIDriver , DBIConnection andDBIResult .
All these arevirtual classes. Drivers define new classes that extend these, e.g.,PgSQLDriver ,
PgSQLConnection , and so on.

DBIObject : Virtual class1 that groups all other DBI classes.
1A virtual class allows us to group classes that share some common characteristics, even if their imple-

mentations are radically different.

3

DBIDriver DBIConnection

DBIObject

PgSQLDriver

ODBCDriver

MySQLDriver

PgSQLConnection

ODBCConnection

MySQLConnection

PgSQLResult

ODBCResult

MySQLResult

DBIResult

Figure 1: Class hierarchy for the DBI. The top two layers are comprised of virtual
classes and each lower layer represents a set of driver-specific implementation classes
that provide the functionality defined by the virtual classes above.

DBIDriver : Virtual class that groups all DBMS drivers. Each DBMS driver extends
this class. Typically generator functions instantiate the actual driver objects, e.g.,
PgSQL() , HDF5() , BerkeleyDB() .

DBIConnection : Virtual class that encapsulates connections to DBMS.

DBIResult : Virtual class that describes the result of a DBMS query or statement.

[Q: Should we distinguish between a simple result of DBMS statements e.g., as
delete from DBMS queries (i.e., those that generate data).]

The methodsformat , print , show, dbGetInfo , andsummary are defined
(andimplementedin theDBI package) for theDBIObject base class, thus available
to all implementations; individual drivers, however, are free to override them as they
see fit.

format(x, ...) : produces a concise character representation (label) for theDBIObject
x .

print(x, ...) /show(x) : prints a one-line identification of the objectx .

summary(object, ...) : produces a concise description of the object. The de-
fault method forDBIObject simply invokesdbGetInfo(dbObj) and prints
the name-value pairs one per line. Individual implementations may tailor this ap-
propriately.

dbGetInfo(dbObj, ...) : extracts information (meta-data) relevant for theDBIObject
dbObj . It may return a list of key/value pairs, individual meta-data if supplied
in the call, orNULL if the requested meta-data is not available.

4

Hint: Driver implementations may choose to allow an argumentwhat to specify
individual meta-data, e.g.,dbGetInfo(drv, what = "max.connections") .

In the next few sub-sections we describe in detail each of these classes and their
methods.

3.1 ClassDBIObject

This class simply groups all DBI classes, and thus all extend it.

3.2 ClassDBIDriver

This class identifies the database management system. It needs to be extended by
individual back-ends (Oracle, PostgreSQL, etc.)

The DBI provides the generatordbDriver("driverName") which simply
invokes the functiondriverName() , which in turn instantiates the corresponding
driver object.

TheDBIDriver class defines the following methods:

driverName() : initializes the driver code. The namedriverName refers to the
actual generator function for the DBMS, e.g.,RPgSQL() , RODBC(), HDF5() .
The driver instance object is used withdbConnect (see page 6) for opening one
or possibly more connections to one or more DBMS.

dbListConnections(drv, ...) : list of current connections being handled by
thedrv driver. May beNULL if there are no open connections. Drivers that do
not support multiple connections may return the one open connection.

dbGetInfo(dbObj, ...) : returns a list of name-value pairs of information about
the driver.

Hint: Useful entries could include

name: the driver name (e.g.,"RODBC", "RPgSQL");

driver.version : version of the driver;

DBI.version : the version of the DBI that the driver implements, e.g.,"0.1-2" ;

client.version : of the client DBMS libraries (e.g., version of thelibpq
library in the case ofRPgSQL);

max.connections : maximum number of simultaneous connections;

plus any other relevant information about the implementation, for instance, how
the driver handles upper/lower case in identifiers.

dbUnloadDriver("driverName") (optional): frees all resources (local and re-
mote) used by the driver. Returns a logical to indicate if it succeeded or not.

5

3.3 ClassDBIConnection

This virtual class encapsulates the connection to a DBMS, and it provides access to
dynamic queries, result sets, DBMS session management (transactions), etc.

Note: Individual drivers are free to implement single or multiple simultaneous con-
nections.

The methods defined by theDBIConnection class include:

dbConnect(drv, ...) : creates and opens a connection to the database imple-
mented by the driverdrv (see Section 3.2). Each driver will define what other
arguments are required, e.g.,"dbname" or "dsn" for the database name,
"user" , and"password" . It returns an object that extendsDBIConnection
in a driver-specific manner (e.g., the MySQL implementation could create an ob-
ject of classMySQLConnection that extendsDBIConnection).

dbDisconnect(conn, ...) : closes the connection, discards all pending work,
and frees resources (e.g., memory, sockets). Returns a logical indicating whether
it succeeded or not.

dbSendQuery(conn, statement, ...) : submits one statement to the DBMS.
It returns aDBIResult object. This object is needed for fetching data in case
the statement generates output (seefetch on page 8), and it may be used for
querying the state of the operation; seedbGetInfo and other meta-data meth-
ods on page 9.

dbGetQuery(conn, statement, ...) : submit, execute, and extract output
in one operation. The resulting object may be adata.frame if thestatement
generates output. Otherwise the return value should be a logical indicating
whether the query succeeded or not.

dbGetException(conn, ...) : returns a list with elementserrNum anderrMsg
with the status of the last DBMS statement sent on a given connection (this in-
formation may also be provided by thedbGetInfo() meta-data function on
theconn object.

Hint: The ANSI SQL-92 defines both a status code and an status message that
could be return as members of the list.

dbGetInfo(dbObj, ...) : returns a list of name-value pairs describing the state
of the connection; it may return one or more meta-data, the actual driver method
allows to specify individual pieces of meta-data (e.g., maximum number of open
results/cursors).

Hint: Useful entries could include

dbname: the name of the database in use;

db.version : the DBMS server version (e.g., ”Oracle 8.1.7 on Solaris”;

host : host where the database server resides;

user : user name;

6

password : password (is this safe?);

plus any other arguments related to the connection (e.g., thread id, socket or TCP
connection type).

dbListResults(conn, ...) : list of DBIResult objects currently active on
the connectionconn . May beNULL if no result set is active onconn . Drivers
that implement only one result set per connection could return that one object
(no need to wrap it in a list).

Note: The following are convenience methods that simplify the import/export of
(mainly) data.frames. The first five methods implement the core methods needed to
attach() remote DBMS to the S search path. (For details, see [2, 3].)

Hint: For relational DBMS these methods may be easily implemented using the
core DBI methodsdbConnect , dbSendQuery , andfetch , due to SQL reflectance
(i.e., one easily gets this meta-data by querying the appropriate tables on the RDBMS).

dbListTables(conn, ...) : returns a character vector (possibly of zero-length)
of object (table) names available on theconn connection.

dbReadTable(conn, name, ...) : imports the data stored remotely in the ta-
ble name on connectionconn . Use the fieldrow.names as therow.names
attribute of the output data.frame. Returns adata.frame .

[Q: should we spell out how row.names should be created? E.g., use a field
(with unique values) as row.names? Also, shoulddbReadTable reproduce a
data.frame exported withdbWriteTable ?]

dbWriteTable(conn, name, value, ...) : write the objectvalue (per-
haps after coercing it to data.frame) into the remote objectname in connection
conn . Returns a logical indicating whether the operation succeeded or not.

dbExistsTable(conn, name, ...) : does remote objectnameexist onconn ?
Returns a logical.

dbRemoveTable(conn, name, ...) : removes remote objectname on con-
nectionconn . Returns a logical indicating whether the operation succeeded or
not.

dbListFields(conn, name, ...) : returns a character vector listing the field
names of the remote tablenameon connectionconn (seedbColumnInfo()
for extracting data type on a table).

Note: The following methods deal with transactions and stored procedures. All
these functions are optional.

dbCommit(conn, ...) (optional): commits pending transaction on the connec-
tion and returnsTRUEor FALSEdepending on whether the operation succeeded
or not.

7

dbRollback(conn, ...) (optional): undoes current transaction on the connec-
tion and returnsTRUEor FALSEdepending on whether the operation succeeded
or not.

dbCallProc(conn, storedProc, ...) (optional): invokes a stored proce-
dure in the DBMS and returns aDBIResult object.

[Stored procedures arenot part of the ANSI SQL-92 standard and vary substan-
tially from one RDBMS to another.]

3.4 ClassDBIResult

This virtual class describes the result and state of execution of a DBMS statement
(any statement, query or non-query). The result setres keeps track of whether the
statement produces output for R/S, how many rows were affected by the operation,
how many rows have been fetched (if statement is a query), whether there are more
rows to fetch, etc.

Note: Individual drivers are free to allow single or multiple active results per con-
nection.

[Q: Should we distinguish between results that return no data from those that return
data?]

The classDBIResult defines the following methods:

fetch(res, n, ...) : fetches the nextn elements (rows) from the result setres
and return them as a data.frame. A value ofn=-1 is interpreted as “return all
elements/rows”.

dbClearResult(res, ...) : flushes any pending data and frees all resources
(local and remote) used by the objectres on both sides of the connection. Re-
turns a logical indicating success or not.

dbGetInfo(dbObj, ...) : returns a name-value list with the state of the result
set.

Hint: Useful entries could include

statement : a character string representation of the statement being executed;

rows.affected : number of affected records (changed, deleted, inserted, or
extracted);

row.count : number of rows fetched so far;

has.completed : has the statement (query) finished?

is.select : a logical describing whether or not the statement generates out-
put;

plus any other relevant driver-specific meta-data.

dbColumnInfo(res, ...) : produces a data.frame that describes the output of a
query. The data.frame should have as many rows as there are output fields in the

8

result set, and each column in the data.frame should describe an aspect of the
result set field (field name, type, etc.)

Hint: The data.frame columns could include

field.name : DBMS field label;

field.type : DBMS field type (implementation-specific);

data.type : corresponding R/S data type, e.g.,"integer" ;

precision /scale : (as in ODBC terminology), display width and number of
decimal digits, respectively;

nullable : whether the corresponding field may contain (DBMS)NULLval-
ues;

plus other driver-specific information.

dbSetDataMappings(flds, ...) (optional): defines a conversion between in-
ternal DBMS data types and R/S classes. We expect the default mappings (see
Section 4) to be by far the most common ones, but users that need more control
may specify a class generator for individual fields in the result set. [This topic
needs further discussion.]

Note: The following are convenience methods that extract information from the
result object (they may be implemented by invokingdbGetInfo() with appropriate
arguments).

dbGetStatement(res, ...) (optional): returns the DBMS statement (as a char-
acter string) associated with the resultres .

dbGetRowsAffected(res, ...) (optional): returns the number of rows affected
by the executed statement (number of records deleted, modified, extracted, etc.)

dbHasCompleted(res, ...) (optional): returns a logical that indicates whether
the operation has been completed (e.g., are there more records to be fetched?).

dbGetRowCount(res, ...) (optional): returns the number of rows fetched so
far.

4 Data Type Mappings

The data types supported by databases are different than the data types in R and S,
but the mapping between the “primitive” types is straightforward: Any of the many
fixed and varying length character types are mapped to R/S"character" . Fixed-
precision (non-IEEE) numbers are mapped into either doubles ("numeric") or long
("integer"). Notice that many DBMS do not follow the so-called IEEE arithmetic,
so there are potential problems with under/overflows and loss of precision, but given
the R/S primitive types we cannot do too much but identify these situations and warn
the application (how?).

9

By default dates and date-time objects are mapped to character using the appropri-
ateTO CHARfunction in the DBMS (which should take care of any locale informa-
tion). Some RDBMS support the typeCURRENCYor MONEYwhich should be mapped
to "numeric" (again with potential round off errors). Large objects (character, bi-
nary, file, etc.) also need to be mapped. User-defined functions may be specified to do
the actual conversion (as has been done in other inter-systems packages2).

Specifying user-defined conversion functions still needs to be defined.

5 Utilities

The core DBI implementation should make available to all drivers some common basic
utilities. For instance:

dbGetDBIVersion : returns the version of the currently attached DBI as a string.

dbDataType(dbObj, obj, ...) : returns a string with the (approximately) ap-
propriate data type for the R/S objectobj . The DBI can implement this follow-
ing the ANSI-92 standard, but individual drivers may want/need to extend it to
make use of DBMS-specific types.

make.db.names(dbObj, snames, ...) : maps R/S names (identifiers) to SQL
identifiers replacing illegal characters (as".") by the legal SQL" " .

SQLKeywords(dbObj, ...) : returns a character vector of SQL keywords (re-
served words). The default method returns the list of.SQL92Keywords , but
drivers should update this vector with the DBMS-specific additional reserved
words.

isSQLKeyword(dbObj, name, ...) : for each element in the character vector
namedetermine whether or not it is an SQL keyword, as reported by the generic
function SQLKeywords . Returns a logical vector parallel to the input object
name.

6 Open Issues and Limitations

There are a number of issues and limitations that the current DBI conscientiously does
not address on the interest of simplicity. We do list here the most important ones.

Non-SQL: Is it realistic to attempt to encompass non-relational databases, like HDF5,
Berkeley DB, etc.?

Security: allowing users to specify their passwords on R/S scripts may be unaccept-
able for some applications. We need to consider alternatives where users could
store authentication on files (perhaps similar to ODBC’sodbc.ini) with more
stringent permissions.

2 Duncan Temple Lang has volunteered to port the data conversion code found in R-Jave, R-Perl, and
R-Python packages to the DBI

10

Exceptions: the exception mechanism is a bit too simple, and it does not provide for
information when problems stem from the DBMS interface itself. For instance,
under/overflow or loss of precision as we move numeric data from DBMS to the
more limited primitives in R/S.

Asynchronous communication: most DBMS support both synchronous and asyn-
chronous communications, allowing applications to submit a query and proceed
while the database server process the query. The application is then notified (or
it may poll the server) when the query has completed. For large computations,
this could be very useful, but the DBI would need to specify how to interrupt
the server (if necessary) plus other details. Also, some DBMS require applica-
tions to use threads to implement asynchronous communication, something that
neither R nor S-Plus currently addresses.

SQL scripts: the DBI only defines how to execute one SQL statement at a time, forc-
ing users to split SQL scripts into individual statements. We need a mechanism
by which users can submit SQL scripts that could possibly generate multiple
result sets; in this case we may need to introduce new methods to loop over
multiple results (similar to Python’snextResultSet).

BLOBS/CLOBS: large objects (both character and binary) present some challenges
both to R and S-Plus. It is becoming more common to store images, sounds, and
other data types as binary objects in DBMS, some of which can be in principle
quite large. The SQL-92 ANSI standard allows up to 2 gigabytes for some of
these objects. We need to carefully plan how to deal with binary objects.

Transactions: transaction management is not fully described.

Additional methods: Do we need any additional methods? (e.g.,dbListDatabases(conn) ,
dbListTableIndices(conn, name) , how do we list all available drivers?)

Bind variables: the interface is heavily biased towards queries, as opposed to general
purpose database development. In particular we made no attempt to define “bind
variables”; this is a mechanism by which the contents of R/S objects are implic-
itly moved to the database during SQL execution. For instance, the following
embedded SQL statement

/* SQL */
SELECT * from emp_table where emp_id = :sampleEmployee

would take the vectorsampleEmployee and iterate over each of its elements
to get the result. Perhaps the DBI could at some point in the future implement
this feature.

7 Resources

The idea of a common interface to databases has been successfully implemented in
various environments, for instance:

11

Java’s Database Connectivity (JDBC) (www.javasoft.com).
In C through the Open Database Connectivity (ODBC) (www.genix.net/unixODBC).
Python’s Database Application Programming Interface (www.python.org).
Perl’s Database Interface (dbi.perl.org).

References

[1] David Axmark, Michael Widenius, Jeremy Cole, and Paul DuBois.MySQL
Reference Manual. http://www.mysql.com/documentation/mysql ,
2001.

[2] John M. Chambers. Data management in S. Technical report, Bell Labs, Lucent
Technologies,http://stat.bell-labs.com/stat/doc , 1991. 3.3

[3] John M. Chambers. Database classes. Technical report, Bell Labs, Lucent Tech-
nologies,http://stat.bell-labs.com/stat/Sbook , 1998. 3.3

[4] Peter Dalgaard. The R-Tcl/Tk interface. InProceed-
ings of the Distributed Statistical Computing 2001 Workshop,
http://www.ci.tuwien.ac.at/Conferences/DSC-2001 , 2001.
Vienna University of Technology.

[5] Alligator Descartes and Tim Bunce.Programming the Perl DBI. O’Reilly, 2000.

[6] Paul DuBois.MySQL. New Riders, 2000.

[7] Jon Ellis, Linda Ho, and Maydene Fisher.JDBC 3.0 Specification. Sun Microsys-
tems, Inc,http://java.sun.com/Download4 , 2000.

[8] Torsten Hothorn, David A. James, and Brian D. Ripley. R/S interfaces to
databases. InProceedings of the Distributed Statistical Computing 2001 Work-
shop, http://www.ci.tuwien.ac.at/Conferences/DSC-2001 ,
2001. Vienna University of Technology.

[9] X/Open Company Ltd.X/Open SQL and RDA Specification. X/Open Company
Ltd., 1994.

[10] Microsoft Inc, http://www.microsoft.com/data/odbc/ . Microsoft
ODBC, 2001.

[11] Erich Neuwirth and Thomas Baier. Embedding R in stan-
dard software, and the other way around. InProceed-
ings of the Distributed Statistical Computing 2001 Workshop,
http://www.ci.tuwien.ac.at/Conferences/DSC-2001 , 2001.
Vienna University of Technology.

[12] George Reese.Database Programming with JDBC and Java. O’Reilly, second
edition, 2000.

12

http://www.javasoft.com/products/jdbc/index.html
http://www.genix.net/unixODBC
http://www.python.org/topics/database
http://dbi.perl.org
http://www.mysql.com/documentation/mysql
http://stat.bell-labs.com/stat/doc
http://stat.bell-labs.com/stat/Sbook
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://java.sun.com/Download4
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://www.microsoft.com/data/odbc/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

[13] B. D. Ripley and R. M. Ripley. Applications of R clients and servers.
In Proceedings of the Distributed Statistical Computing 2001 Workshop,
http://www.ci.tuwien.ac.at/Conferences/DSC-2001 , 2001.
Vienna University of Technology.

[14] Brian D. Ripley. Using databases with R.R News, 1(1):18–20, January 2001.

[15] R Development Core Team. R Data Import/Export.
http://www.r-project.org , 2001.

[16] Duncan Temple Lang. Embedding S in other languages and environments.
In Proceedings of the Distributed Statistical Computing 2001 Workshop,
http://www.ci.tuwien.ac.at/Conferences/DSC-2001 , 2001.
Vienna University of Technology.

13

http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://www.r-project.org
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

	Version
	Introduction
	DBI Classes and Methods
	Class PD1OT1ptmptmmmnnDBIObject
	Class PD1OT1ptmptmmmnnDBIDriver
	Class PD1OT1ptmptmmmnnDBIConnection
	Class PD1OT1ptmptmmmnnDBIResult

	Data Type Mappings
	Utilities
	Open Issues and Limitations
	Resources

